logo image

ATD Blog

Will a Chat Bot Be Your Next Learning Coach?


Tue Feb 06 2018

Will a Chat Bot Be Your Next Learning Coach?

Eighty percent of major companies expect to be using artificial intelligence by 2020, but their training departments are likely to be the last places you’ll find it. We need to fix that.

A recent survey of Millennials revealed that 40 percent of them interact with a chat bot, a program that simulates a human conversation, on a daily basis; another survey indicates that many people prefer chat bots over humans for certain types of customer support transactions.


While other industries are already developing AI, the learning industry seems to be lagging behind. It’s pretty hard to implement something you don’t understand, so let’s start there.

Artificial Intelligence

Artificial intelligence, or AI, is a branch of computer science that aims to create intelligent machines, capable of performing problem-solving, pattern recognition, and learning without explicit programming.

AI requires vast amounts of data to create intelligent machines, and Big Data requires intelligent machines to perform the massive calculations necessary to find meaningful patterns and connections. For this reason, you will often find Big Data and AI are employed together and support each other.

Big Data

“Big Data” refers to data sets that are so voluminous and complex that traditional data processing application software packages are inadequate to deal with them. Big Data challenges include capturing data, data storage, data analysis, search, sharing, transfer, visualization, querying, updating, and information privacy.

Big Data analytics examines these massive, varied data sets to uncover hidden patterns, unknown correlations, market trends, customer preferences, and other useful information that drives artificial intelligence.


3 Dimensions of Big Data

There are three dimensions to Big Data: velocity, variety, and volume.


Data is coming at us from all directions, and it is coming faster every day. To benefit from Big Data insights, companies must be able to capture, analyze, and use this massive amount of information as quickly as it is coming in. Human beings alone could never keep up with this firehose of information, so Big Data solutions must include strategies to control and keep up with the speed of incoming data. Bring in the smart machines!


Consider your own experience as a digital consumer. In a single hour, you may read an email on your PC, send a text on your phone, download a podcast, watch a video, and post a tweet. Each requires different strategies for capture and analysis—and these are only a few examples of the diversity of data available online today.



Here is just a snapshot of the sheer volume of data that came at us every day of 2017:

  • 456,000 tweets on Twitter

  • 50,926 videos viewed on Buzzfeed

  • 3,607,080 Google searches.

The amount of data coming from your learning management system (LMS) and performance management software is puny compared to the onslaught coming from social media; but it is part of the Big Data mosaic, and most of us are simply not taking advantage of the information we have readily available.

Machine Learning

Machine learning is an application of AI that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.

In other words, machine learning focuses on the development of computer programs that can access large amounts of data and change their behavior or programming based on that information, without human intervention. Uses for machine learning in talent development include:

  • Assess and predict job performance.

  • Predict the competencies that will be needed in 10 years so learners can develop relevant skills today.

  • Provide personalized conversation about new information, performance coaching, or motivation on a 24-hour basis, without the need for a human coach.

  • Identify learner competencies and gaps to make better training and education suggestions that are truly personalized to the individual.

Examples of AI in Talent Development

Here are just a few examples of education-focused AIs that are already in use. Many early adopters are in the higher education arena, but the ideas work equally well in corporate training or K-12 education.

Jill Watson, the virtual teaching assistant at the Georgia Institute of Technology, communicates with students via email.

Virtual tutors can help each learner move at a pace that is right for them.

Penn State is using chat bots to help teachers gain confidence handling difficult conversations, like bullying or hate language in class.

Think grading essays requires the human touch? Think again! At Stanford, an AI grading system achieved an 81 percent accuracy rate when compared to essays graded by humans.

Beware These Beginner Mistakes

Because some AI applications are still in the early days on the hype cycle, I interviewed an AI expert at one of my client organizations to find out what common mistakes she sees in chat bot projects led by early adopters. Here’s a summary of her list.

Garbage In/Garbage Out (GIGO)

Many projects fail because project managers forget to check data quality, or do not have the right approach to identify and resolve these issues. When we analyze incomplete or “dirty” data sets, our AI ends up making decisions and recommendations based on a poor foundation.

Apples and Oranges

Comparing unrelated data sets or data points will result in inferring relationships or similarities that do not exist.

Overly Narrow Focus

Some projects are designed to consider one data set without considering other data points that might be crucial for the analysis. For example, a project set up to analyze learner pass/fail rates while ignoring the course completion rate may inflate performance results.

Cool but Useless

Some AI projects are quick to deliver but fail to make a significant impact on the learner’s everyday experience. Ensure that you have the right strategy to deliver the most value to your learners, and avoid giving them something cool that doesn’t really help them learn.

Getting Started

My advice is to just get on with it. Make a point of learning something about AI and machine learning every day, always with an eye to how you might be able to use it in your own organization. Here are a few suggestions:

Build a Bot

There are dozens of platforms that let you create free chat bots for specific messaging apps without any special skills or coding knowledge. Snatchbot, for example, can be used on Facebook Messenger, Slack, WeChat, Skype, and more. It’s easy to use, and the interface is probably already familiar to many of your users. And Botsify has a variety of bot templates to get you started, including a whole list of education bots. Looking for more do-it-yourself tools? Here’s a nice list from business2community.com.

Engage With Colleagues

You might be surprised how many of your colleagues are eager to test the waters with a chat bot or other educational AI application. You won’t find them unless you join the conversation. One place to start is by attending the ATD 2018 International Conference & Exposition (for example, Elliott Masie will talk about some innovations changing workplace learning during the session, Learning Trends, Disrupters, and Hype in 2018) or any of our other conferences designed to educate, engage, and inspire you.

Will You Be Replaced by a Chat Bot?

While there is a vast difference of opinion on how AI is shaping the very near future of work and learning, one thing I know for sure: Those of us who are not part of the disruption will become lost in the dust that the disruptors kick up. I plan on being in front of it.

You've Reached ATD Member-only Content

Become an ATD member to continue

Already a member?Sign In


Copyright © 2024 ATD

ASTD changed its name to ATD to meet the growing needs of a dynamic, global profession.

Terms of UsePrivacy NoticeCookie Policy